Reservatório de Hidrogênio Líquido
Sistemas de armazenamento de hidrogênio líquido resolvem vários problemas como peso e tamanho que estão associados aos sistemas de compressão em alta pressão.
Para que atingir o estado líquido o hidrogênio deve estar abaixo do seu ponto de ebulição (-253 °C) na pressão ambiente num tanque muito bem isolado, geralmente com vácuo entre duas camadas, muito parecido com uma garrafa térmica. Os tanques de armazenamento não precisam ser altamente reforçados como acontece com os cilindros de alta pressão, mas precisam ser adequadamente robustos para aplicações automotivas.
O hidrogênio não pode ser armazenado no estado líquido indefinidamente. Todos os tanques, mesmo aqueles com excelente isolamento, permitem a troca de calor com os ambientes externos. A taxa de transferência de calor depende do desenho e tamanho do tanque - neste caso, quanto maior o tanque, melhor. O calor faz com que parte do hidrogênio evapore e a pressão no tanque diminua. Para diminuir a perda por evaporação, a maioria dos tanques utiliza o desenho esférico, pois oferecem a menor área para um determinado volume, tendo assim uma menor área de transferência.
Os tanques têm uma pressão máxima de operação de 72 psi (5 bar). Se o hidrogênio não for consumido mais rapidamente que sua evaporação, a pressão cresce até um ponto em que o hidrogênio descarrega através de uma válvula de alívio. O hidrogênio descarregado não só é uma perda direta deste combustível, como pode ter um poder de flamabilidade se o carro estiver estacionado em locais fechados. Para que este fluxo de perda seja controlado para não ocorrer uma possível acumulação em potencial, os veículos apresentam válvulas de alívio que liberam o gás numa taxa de 1 a 2% por dia.
Quando utilizado em motores à combustão, o hidrogênio líquido pode ser injetado diretamente nos cilindros. Quando utilizado em carros movidos por células a combustível, o hidrogênio gasoso atinge uma pressão suficiente para que ocorram as reações químicas nos eletrodos e catalisadores.
Embora o armazenamento de hidrogênio líquido elimine o perigo associado às altas pressões, eles introduzem perigos associados à baixa temperatura. O carbono tem problemas de exposição em temperaturas menores que -30 °C, tornando-o quebradiço e susceptível a fratura. Além disso, o ar pode se liquefazer no lado de fora ou dentro da área de isolamento resultando numa concentração de oxigênio que pode causar uma faísca ou explosão se entrar em contato com materiais combustíveis.O hidrogênio líquido é mais denso que no estado gasoso, mas mesmo assim é mais volumoso que a gasolina considerando-se uma quantidade de energia equivalente. Comparando-se com os tanques de gasolina, os sistemas de armazenamento de hidrogênio são de 4 a 10 vezes maiores e pesados para uma quantidade equivalente de energia.
Sistemas de armazenamento de hidrogênio líquido resolvem vários problemas como peso e tamanho que estão associados aos sistemas de compressão em alta pressão.
Para que atingir o estado líquido o hidrogênio deve estar abaixo do seu ponto de ebulição (-253 °C) na pressão ambiente num tanque muito bem isolado, geralmente com vácuo entre duas camadas, muito parecido com uma garrafa térmica. Os tanques de armazenamento não precisam ser altamente reforçados como acontece com os cilindros de alta pressão, mas precisam ser adequadamente robustos para aplicações automotivas.
O hidrogênio não pode ser armazenado no estado líquido indefinidamente. Todos os tanques, mesmo aqueles com excelente isolamento, permitem a troca de calor com os ambientes externos. A taxa de transferência de calor depende do desenho e tamanho do tanque - neste caso, quanto maior o tanque, melhor. O calor faz com que parte do hidrogênio evapore e a pressão no tanque diminua. Para diminuir a perda por evaporação, a maioria dos tanques utiliza o desenho esférico, pois oferecem a menor área para um determinado volume, tendo assim uma menor área de transferência.
Os tanques têm uma pressão máxima de operação de 72 psi (5 bar). Se o hidrogênio não for consumido mais rapidamente que sua evaporação, a pressão cresce até um ponto em que o hidrogênio descarrega através de uma válvula de alívio. O hidrogênio descarregado não só é uma perda direta deste combustível, como pode ter um poder de flamabilidade se o carro estiver estacionado em locais fechados. Para que este fluxo de perda seja controlado para não ocorrer uma possível acumulação em potencial, os veículos apresentam válvulas de alívio que liberam o gás numa taxa de 1 a 2% por dia.
Quando utilizado em motores à combustão, o hidrogênio líquido pode ser injetado diretamente nos cilindros. Quando utilizado em carros movidos por células a combustível, o hidrogênio gasoso atinge uma pressão suficiente para que ocorram as reações químicas nos eletrodos e catalisadores.
Embora o armazenamento de hidrogênio líquido elimine o perigo associado às altas pressões, eles introduzem perigos associados à baixa temperatura. O carbono tem problemas de exposição em temperaturas menores que -30 °C, tornando-o quebradiço e susceptível a fratura. Além disso, o ar pode se liquefazer no lado de fora ou dentro da área de isolamento resultando numa concentração de oxigênio que pode causar uma faísca ou explosão se entrar em contato com materiais combustíveis.O hidrogênio líquido é mais denso que no estado gasoso, mas mesmo assim é mais volumoso que a gasolina considerando-se uma quantidade de energia equivalente. Comparando-se com os tanques de gasolina, os sistemas de armazenamento de hidrogênio são de 4 a 10 vezes maiores e pesados para uma quantidade equivalente de energia.
Nenhum comentário:
Postar um comentário